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A remark on Stirling’s formula

Herbert Robbins, Columbia University

We shall prove Stirling’s formula by showing that for n = 1, 2, . . .

(1) n! =
√

2πnn+
1
2 e−n · ern

where rn satisfies the double inequality

(2)
1

12n+ 1
< rn <

1

12n
.

The usual textbook proofs replace the first inequality in (2) by the weaker
inequality

0 < rn

or
1

12n+ 6
< rn.

Proof. Let

Sn = log(n!) =

n−1∑
p=1

log(p+ 1)

and write

(3) log(p+ 1) = Ap + bp − εp

where

Ap =

∫ p+1

p

log x dx, bp =
1

2
[log(p+ 1)− log p]

εp =

∫ p+1

p

log x dx− 1

2
[log(p+ 1) + log p].

The partition (3) of log(p + 1), regarded as the area of a rectangle with base
(p, p+ 1) and height log(p+ 1), into a curvilinear area, a triangle, and a small
sliver1 is suggested by the geometry of the curve y = log x. Then

Sn =

n−1∑
p=1

(Ap + bp − εp) =

∫ n

1

log xdx+
1

2
log n−

n−1∑
p=1

εp.

1Taken from G. Darmois, Statistique Mathématique, Paris, 1928, pp. 315-317. The only
novelty of the present note is the inequality (7) which permits the first part of the estimate (2).
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Since
∫

log xdx = x log x− x we can write

(4) Sn =

(
n+

1

2

)
log n− n+ 1−

n−1∑
p=1

εp

where

εp =
2p+ 1

2
log

(
p+ 1

p

)
− 1.

Using the well known series

log

(
1 + x

1− x

)
= 2

(
x+

x3

3
+
x5

5
+ · · ·

)
valid for |x| < 1, and setting x = (2p+1)−1, so that (1+x)/(1−x) = (p+1)/p,
we find that

(5) εp =
1

3(2p+ 1)2
+

1

5(2p+ 1)4
+

1

7(2p+ 1)6
+ · · ·

We can therefore bound εp above and below:

εp <
1

3(2p+ 1)2

{
1 +

1

(2p+ 1)2
+

1

(2p+ 1)4
+ · · ·

}
=

1

3(2p+ 1)2
· 1

1− 1
(2p+1)2

=
1

12

(
1

p
− 1

p+ 1

)
,

(6)

εp >
1

3(2p+ 1)2

{
1 +

1

3(2p+ 1)2
+

1

[3(2p+ 1)2]
2 + · · ·

}

=
1

3(2p+ 1)2
· 1

1− 1
3(2p+1)2

>
1

12

(
1

p+ 1
12

− 1

p+ 1 + 1
12

)
.

(7)

Now define

(8) B =
∞∑
p=1

εp, rn =
∞∑

p=n

εp

where from (6) and (7) we have

(9)
1

13
< B <

1

12
.

Then we can write (4) in the form

Sn =

(
n+

1

2

)
log n− n+ 1−B + rn,

or, setting C = e1−B , as

n! = C · nn+ 1
2 e−n · ern ,
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where rn is defined by (8), εp by (5), and from (6) and (7) we have

1

12n+ 1
< rn <

1

12n
.

The constant C, known from (9) to lie between e11/12 and e12/13, may be shown
by one of the usual methods to have the value

√
2π. This completes the proof.

The preceding derivation was motivated by the geometrically suggestive par-
tition (3). The editor has pointed out that the inequalities (6) and (7) permit
the following brief proof2 of (2). Let

un = n!n−(n+ 1
2 )en

Then the series

log

(
1 +

1

n

)n+ 1
2

= 1 +
1

3(2n+ 1)2
+

1

5(2n+ 1)4
+ · · ·

together with (6) and (7) yield the inequalities

exp

{
1

12

(
1

n+ 1
12

− 1

n+ 1 + 1
12

)}
<

un
un+1

= e−1
(

1 +
1

n

)n+ 1
2

< exp

{
1

12

(
1

n
− 1

n+ 1

)}
Hence

vn = une
−1/12n

increases and
wn = une

−1/(12n+1)

decreases, while
vn < wn = vne

1/12n(12n+1).

Since
v1 = e11/12, w1 = e12/13

it follows that

vn → C, wn → C, vn < C < wn, e11/12 < C < e12/13.

Thus
un = Cern

where rn satisfies (2).

2A modification of that attributed to Cesàro by A. Fisher, Mathematical theory of proba-
bilities, New York, 1936, pp. 93-95.
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