Elementary proof that \(e \) is irrational

L. L. Pennisi, University of Illinois

The following variation on the usual proof of the irrationality of \(e \) is perhaps slightly simpler. Suppose that \(e \) is rational, say \(e = a/b \). Then

\[
\frac{b}{a} = \frac{1}{e} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}
\]

and multiplication by \((-1)^{a+1}a!\) and transposition of terms gives

\[
(-1)^{a+1} \left\{ b(a - 1)! - \sum_{n=0}^{a} \frac{(-1)^n a!}{n!} \right\}
\]

\[
= \frac{1}{(a + 1)} - \frac{1}{(a + 1)(a + 2)} + \frac{1}{(a + 1)(a + 2)(a + 3)} - \cdots
\]

The right side has a value between 0 and 1 since the alternating series clearly converges to a value between its first term and the sum of its first two terms. But the left side is an integer, so we have a contradiction.